
Introduction to key concepts



Agenda

• FM, Prompt Engineering, Prompt Tuning and Fine Tuning

• Use Gen-AI API from python code in Notebooks or VS Code

• Leverage LangChain

• Retrieval Augmented Generation

• Introduction to Embeddings and VectorDB

• Position IBM Watson & other products as relevant



Traditional AI models Foundation Models

• Individual siloed models
• Require task specific training 
• Lots of human supervised training
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Foundational models enable a new paradigm of 
data-efficient AI development – generative AI



Foundation models are … Pre-trained

On unlabeled datasets 
of different modalities 
(e.g., language, time-
series, tabular)

Self-learning

Systems that leverage 
self-supervised learning

Multiple applications

Able to learn 
generalizable and 
adaptable data 
representations that can 
be effectively used in a 
variety of domains and 
tasks (code generation, 
question answering, 
sentiment analysis)

Large language models

A type of foundation 
model trained withy 
language-related data

ChatGPT is based on a 
large language model

Self-supervised
training

Foundation model



Foundation models: 
generalizable and adaptable 
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Requires increasing m
odel sizeIn prompt engineering or prompt    

tuning, the model is not changed.

In prompt tuning, labeled
client data is passed in.

Fine-tuning requires labeled data and more resources to 
tune the model. When a model is fine-tuned, some of 
the weights     are modified and clients get a private 
instance of the model.

Prompt Lab

Tuning Studio

Roadmap item



When to tune a model?

7

(1) Achieving better 
performance with base model

(2) Reducing costs at scale by 
deploying smaller model

By tuning a smaller base model to 
perform similarly to a significantly 
bigger model, we can reduce costs 
when model deployed at scale.

Always start with prompt engineering the largest LLM suited 
for your task. 

This should provide some indication that the task is suited to be addressed by 
LLMs. It is also helpful to experiment with different labelled examples and 
understand which prompt formats work best on the target task.

By tuning the model on a large 
number of labelled examples, we 
can enhance the model 
performance compared to prompt 
engineering alone.

Decision to tune can be motivated by: 

Cost of labelled data acquisition is an important 
consideration in the decision process.



Step 2 Step 3Step 1Suggested workflow

Initial PoC

Prove the use case with 
minimal effort

Use the largest model and 
minimal labeled data

Create labeled test dataset 
to measure model accuracy

Pilot deployment

Reduce costs as permitted 
within PoC duration

Prompt engineer or prompt-
tune a medium-size model.

You may need to gather 
additional labeled data

Deployment at scale

Maximize ROI

Consider using additional 
data gathered to fine-tune / 
prompt-tune a small model.

Deploy the tuned model

Goal

Recommendation

Inference costs $$$ $$ $

8

Stage

Note: fine-tuning a model requires creating a 
copy of the model specific to the user.
The cost of hosting this model may impact the 
ROI analysis compared to prompt tuning.
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• IBM watsonx.ai clients have access to 

the latest and greatest open-source 

foundation models from Hugging Face.

• The IBM and Hugging Face partnership 

demonstrates a joint commitment to 

deliver an open ecosystem to clients, 

allowing them to find the best foundation 

models for their business needs.

IBM partnership with open- 
source models provider



Most common 
generative AI tasks 
implemented today

Question-answering

Create a question-answering 
feature grounded on specific 
content.

Build a product specific Q&A 
resource for customer service 
agents.

Summarization

Transform text with domain-
specific content into 
personalized overviews that 
capture key points.

Conversation summaries, 
insurance coverage, meeting 
transcripts, contract information

Generation

Generate text content for        a 
specific purpose.

Marketing campaigns, job 
descriptions, blog posts and 
articles, email drafting support

Extraction

Analyze and extract essential 
information from unstructured 
text.

Medical diagnosis support,
user research findings

Classification

Read and classify written input 
with as few as zero examples.

Sorting of customer complaints, 
threat and vulnerability 
classification, sentiment analysis, 
customer segmentation



LangChain for LLMs

• LangChain is an open-source framework designed to simplify creating applications 
using LLMs.
• Models
• Prompt Templates
• Parsers
• Chains
• Question Answer



Retrieval Augmented Search - Overview
Conversational search – Q&A for documents



Phase 1
Prepare the data



Phase 2 
Query the data

Few paragraphs 
related to the 

question

User’s question



Phase 2 (new steps based on LLMs)
Query the data

Few paragraphs 
related to the 

question

WatsonX.ai

Read the following paragraphs and answer 
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

User’s question



Phase 1: The “traditional” way

Phase 1
Ingest your data
(a) Original files to documents
(b) Documents to chunks
(c) Chunks to database

(a) (b) (c) relational or 
non relational

Passages of text



Phase 2: Syntactic search
Query the data

Few paragraphs 
related to the 

question

WatsonX.ai

Read the following paragraphs and answer 
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

How to apply for a card?

Retrieve all the rows/documents such 
that the chunk contains either apply 

or card 



Phase 1: The “embeddings” way

Phase 1
Ingest your data
(a) Original files to documents
(b) Documents to chunks
(c) Chunks to embeddings
(d) Embeddings to vector store

Passages 
of text “Embeddings”

NEW STEP



Phase 1: The “embeddings” way



Phase 1: The “embeddings” way – VectorDB

• A vector database is a special type of database that can store high-dimensional 
vectors which are mathematical representations of the features. 
• This data is nothing, but a vector created through embeddings
• Use cases

• Recommendation systems
• Anomaly detections
• NLP

Content

Application

Embedd
ing 

Model
Vector Embeddings Vector 

DatabaseQuery

Query 
Result



Phase 2: Semantic search
Query the data

Few paragraphs 
related to the 

question

WatsonX.ai

Read the following paragraphs and answer 
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

How to apply 
for a card?

Retrieve all the embeddings that are 
the closest to the embedding of the 

user’s question



Syntactic vs. Semantic search
Why semantic is a “better” way of searching for information

The user expresses himself in his/her own way, whereas the documents 
usually use “specialized” terms.

Examples:

Paid leave of absence
(IBM HR documents)

Day off

Corporate assets
(Bank’s code of ethics)

Company’s laptop

Revenue, profits, benefits
(10K form)

Money



How to improve the accuracy?

Optimize the config at each and every step:

1. Length of the chunks of texts
2. Choice of embeddings library
3. Distance function between embeddings
4. Number of chunks retrieved from the database
5. Prompt
6. LLM parameters (temperature, topK, top, etc)
7. Choice of LLM
8. Etc.

BUT there are more efficient ways

(1) (2)

(3)

Read the following paragraphs and answer 
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

(5)

(4)

WatsonX.ai

(6), (7)



Watson / watsonx.ai Strawman Patterns
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Backend 
System
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Vector db
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App
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Watson 
Assistant

Backend 
System

Watson 
Discovery

watsonx.ai

Classic Conversational AI

5 Gen-AI Conversations

3 Conversational Insights Discovery

4 Gen-AI Insights Discovery

Web App Watson 
Discovery

2 Classic Insights Discovery

6 Gen-AI Basic

7 Gen-AI Simple
Tasks
1. Summarization
2. Q & A
3. Extraction
4. Classification
5. Generation
6. Transformation
7. Listing
8. Comparison

Sample Technology Stack 
(non-IBM)
1. Python
2. LangChain
3. ChromaDB, Pinecone…
4. Flask, FastAPI…
5. MySQL

IBM Tech
1. Foundation Models
2. Prompt Lab
3. Watson Assistant
4. Watson Discovery
5. Watson Speech
6. IBM Cloud



Watsonx.ai using Python SDK

Demo



Thank You


