
Introduction to key concepts

Agenda

• FM, Prompt Engineering, Prompt Tuning and Fine Tuning

• Use Gen-AI API from python code in Notebooks or VS Code

• Leverage LangChain

• Retrieval Augmented Generation

• Introduction to Embeddings and VectorDB

• Position IBM Watson & other products as relevant

Traditional AI models Foundation Models

• Individual siloed models
• Require task specific training
• Lots of human supervised training

A

B

Model1

Model2

Model3

Model4

Training
with labeled

data
Tasks

Massive unlabeled
external data

Pre
Trained

A

+ Enterprise
proprietary data

• Rapid adaptation to multiple tasks with
small amounts of task-specific data

• Pre-trained unsupervised learning

Foundation
model

Tasks

Prompt-tuningTuning

Prompting

Fine-tuning

Q&A

Summarization

Differentiation
via training with
enterprise data

…

Foundational models enable a new paradigm of
data-efficient AI development – generative AI

Foundation models are … Pre-trained

On unlabeled datasets
of different modalities
(e.g., language, time-
series, tabular)

Self-learning

Systems that leverage
self-supervised learning

Multiple applications

Able to learn
generalizable and
adaptable data
representations that can
be effectively used in a
variety of domains and
tasks (code generation,
question answering,
sentiment analysis)

Large language models

A type of foundation
model trained withy
language-related data

ChatGPT is based on a
large language model

Self-supervised
training

Foundation model

Foundation models:
generalizable and adaptable

Task-specific
fine-tuning

Translation
model

Summarization
model

Answer finding
model

+

Input
text

Translated input

Summarized input

Answer to the
input question

+

Translation
prompt

Summarization
prompt

Answer finding
prompt

+

Foundation model

Task A

Task B

Task C

Fine-tuning

Prompt-tuning

Prompt
engineering

Rapid adaptation to multiple
tasks with small amounts of
task-specific data

In
cr

ea
si

ng
 c

om
pl

ex
ity

 a
nd

 s
ki

lls

Requires increasing m
odel sizeIn prompt engineering or prompt

tuning, the model is not changed.

In prompt tuning, labeled
client data is passed in.

Fine-tuning requires labeled data and more resources to
tune the model. When a model is fine-tuned, some of
the weights are modified and clients get a private
instance of the model.

Prompt Lab

Tuning Studio

Roadmap item

When to tune a model?

7

(1) Achieving better
performance with base model

(2) Reducing costs at scale by
deploying smaller model

By tuning a smaller base model to
perform similarly to a significantly
bigger model, we can reduce costs
when model deployed at scale.

Always start with prompt engineering the largest LLM suited
for your task.

This should provide some indication that the task is suited to be addressed by
LLMs. It is also helpful to experiment with different labelled examples and
understand which prompt formats work best on the target task.

By tuning the model on a large
number of labelled examples, we
can enhance the model
performance compared to prompt
engineering alone.

Decision to tune can be motivated by:

Cost of labelled data acquisition is an important
consideration in the decision process.

Step 2 Step 3Step 1Suggested workflow

Initial PoC

Prove the use case with
minimal effort

Use the largest model and
minimal labeled data

Create labeled test dataset
to measure model accuracy

Pilot deployment

Reduce costs as permitted
within PoC duration

Prompt engineer or prompt-
tune a medium-size model.

You may need to gather
additional labeled data

Deployment at scale

Maximize ROI

Consider using additional
data gathered to fine-tune /
prompt-tune a small model.

Deploy the tuned model

Goal

Recommendation

Inference costs $$$ $$ $

8

Stage

Note: fine-tuning a model requires creating a
copy of the model specific to the user.
The cost of hosting this model may impact the
ROI analysis compared to prompt tuning.

Traditional AI models Foundation Models

• Individual siloed models
• Require task specific training
• Lots of human supervised training

A

B

Model1

Model2

Model3

Model4

Training
with labeled

data
Tasks

Massive unlabeled
external data

Pre
Trained

A

+ Enterprise
proprietary data

• Rapid adaptation to multiple tasks with
small amounts of task-specific data

• Pre-trained unsupervised learning

Foundation
model

Tasks

Prompt-tuningTuning

Prompting

Fine-tuning

Q&A

Summarization

Differentiation via
training with
enterprise data

…

Foundational models enable a new paradigm of
data-efficient AI development – generative AI

• IBM watsonx.ai clients have access to

the latest and greatest open-source

foundation models from Hugging Face.

• The IBM and Hugging Face partnership

demonstrates a joint commitment to

deliver an open ecosystem to clients,

allowing them to find the best foundation

models for their business needs.

IBM partnership with open-
source models provider

Most common
generative AI tasks
implemented today

Question-answering

Create a question-answering
feature grounded on specific
content.

Build a product specific Q&A
resource for customer service
agents.

Summarization

Transform text with domain-
specific content into
personalized overviews that
capture key points.

Conversation summaries,
insurance coverage, meeting
transcripts, contract information

Generation

Generate text content for a
specific purpose.

Marketing campaigns, job
descriptions, blog posts and
articles, email drafting support

Extraction

Analyze and extract essential
information from unstructured
text.

Medical diagnosis support,
user research findings

Classification

Read and classify written input
with as few as zero examples.

Sorting of customer complaints,
threat and vulnerability
classification, sentiment analysis,
customer segmentation

LangChain for LLMs

• LangChain is an open-source framework designed to simplify creating applications
using LLMs.
• Models
• Prompt Templates
• Parsers
• Chains
• Question Answer

Retrieval Augmented Search - Overview
Conversational search – Q&A for documents

Phase 1
Prepare the data

Phase 2
Query the data

Few paragraphs
related to the

question

User’s question

Phase 2 (new steps based on LLMs)
Query the data

Few paragraphs
related to the

question

WatsonX.ai

Read the following paragraphs and answer
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

User’s question

Phase 1: The “traditional” way

Phase 1
Ingest your data
(a) Original files to documents
(b) Documents to chunks
(c) Chunks to database

(a) (b) (c) relational or
non relational

Passages of text

Phase 2: Syntactic search
Query the data

Few paragraphs
related to the

question

WatsonX.ai

Read the following paragraphs and answer
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

How to apply for a card?

Retrieve all the rows/documents such
that the chunk contains either apply

or card

Phase 1: The “embeddings” way

Phase 1
Ingest your data
(a) Original files to documents
(b) Documents to chunks
(c) Chunks to embeddings
(d) Embeddings to vector store

Passages
of text “Embeddings”

NEW STEP

Phase 1: The “embeddings” way

Phase 1: The “embeddings” way – VectorDB

• A vector database is a special type of database that can store high-dimensional
vectors which are mathematical representations of the features.
• This data is nothing, but a vector created through embeddings
• Use cases

• Recommendation systems
• Anomaly detections
• NLP

Content

Application

Embedd
ing

Model
Vector Embeddings Vector

DatabaseQuery

Query
Result

Phase 2: Semantic search
Query the data

Few paragraphs
related to the

question

WatsonX.ai

Read the following paragraphs and answer
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

How to apply
for a card?

Retrieve all the embeddings that are
the closest to the embedding of the

user’s question

Syntactic vs. Semantic search
Why semantic is a “better” way of searching for information

The user expresses himself in his/her own way, whereas the documents
usually use “specialized” terms.

Examples:

Paid leave of absence
(IBM HR documents)

Day off

Corporate assets
(Bank’s code of ethics)

Company’s laptop

Revenue, profits, benefits
(10K form)

Money

How to improve the accuracy?

Optimize the config at each and every step:

1. Length of the chunks of texts
2. Choice of embeddings library
3. Distance function between embeddings
4. Number of chunks retrieved from the database
5. Prompt
6. LLM parameters (temperature, topK, top, etc)
7. Choice of LLM
8. Etc.

BUT there are more efficient ways

(1) (2)

(3)

Read the following paragraphs and answer
the question:
[Paragraph 1]
[Paragraph 2]
[Paragraph 3]
Question: [User’s question]
Answer:

(5)

(4)

WatsonX.ai

(6), (7)

Watson / watsonx.ai Strawman Patterns

Watson
Assistant

Backend
System

Watson
Assistant

Backend
System

watsonx.ai

LangChain
App

watsonx.ai

LangChain
App watsonx.ai

1

Vector db

Embeddings
App

Backend
System

Watson
Assistant

Backend
System

Watson
Discovery

Watson
Assistant

Backend
System

Watson
Discovery

watsonx.ai

Classic Conversational AI

5 Gen-AI Conversations

3 Conversational Insights Discovery

4 Gen-AI Insights Discovery

Web App Watson
Discovery

2 Classic Insights Discovery

6 Gen-AI Basic

7 Gen-AI Simple
Tasks
1. Summarization
2. Q & A
3. Extraction
4. Classification
5. Generation
6. Transformation
7. Listing
8. Comparison

Sample Technology Stack
(non-IBM)
1. Python
2. LangChain
3. ChromaDB, Pinecone…
4. Flask, FastAPI…
5. MySQL

IBM Tech
1. Foundation Models
2. Prompt Lab
3. Watson Assistant
4. Watson Discovery
5. Watson Speech
6. IBM Cloud

Watsonx.ai using Python SDK

Demo

Thank You

